Predicting hybrid performance in rice using genomic best linear unbiased prediction.
نویسندگان
چکیده
Genomic selection is an upgrading form of marker-assisted selection for quantitative traits, and it differs from the traditional marker-assisted selection in that markers in the entire genome are used to predict genetic values and the QTL detection step is skipped. Genomic selection holds the promise to be more efficient than the traditional marker-assisted selection for traits controlled by polygenes. Genomic selection for pure breed improvement is based on marker information and thus leads to cost-saving due to early selection before phenotypes are measured. When applied to hybrid breeding, genomic selection is anticipated to be even more efficient because genotypes of hybrids are predetermined by their inbred parents. Hybrid breeding has been an important tool to increase crop productivity. Here we proposed and applied an advanced method to predict hybrid performance, in which a subset of all potential hybrids is used as a training sample to predict trait values of all potential hybrids. The method is called genomic best linear unbiased prediction. The technology applied to hybrids is called genomic hybrid breeding. We used 278 randomly selected hybrids derived from 210 recombinant inbred lines of rice as a training sample and predicted all 21,945 potential hybrids. The average yield of top 100 selection shows a 16% increase compared with the average yield of all potential hybrids. The new strategy of marker-guided prediction of hybrid yields serves as a proof of concept for a new technology that may potentially revolutionize hybrid breeding.
منابع مشابه
Comparing Different Marker Densities and Various Reference Populations Using Pedigree-Marker Best Linear Unbiased Prediction (BLUP) Model
In order to have successful application of genomic selection, reference population and marker density should be chosen properly. This study purpose was to investigate the accuracy of genomic estimated breeding values in terms of low (5K), intermediate (50K) and high (777K) densities in the simulated populations, when different scenarios were applied about the reference populations selecting. Af...
متن کاملGenomic Prediction of Manganese Efficiency in Winter Barley.
Manganese efficiency is a quantitative abiotic stress trait controlled by several genes each with a small effect. Manganese deficiency leads to yield reduction in winter barley ( L.). Breeding new cultivars for this trait remains difficult because of the lack of visual symptoms and the polygenic features of the trait. Hence, Mn efficiency is a potential suitable trait for a genomic selection (G...
متن کاملA Comparison of the Sensitivity of the BayesC and Genomic Best Linear Unbiased Prediction(GBLUP) Methods of Estimating Genomic Breeding Values under Different Quantitative Trait Locus(QTL) Model Assumptions
The objective of this study was to compare the accuracy of estimating and predicting breeding values using two diverse approaches, GBLUP and BayesC, using simulated data under different quantitative trait locus(QTL) effect distributions. Data were simulated with three different distributions for the QTL effect which were uniform, normal and gamma (1.66, 0.4). The number of QTL was assumed to be...
متن کاملPrediction of Times to Failure of Censored Units in Progressive Hybrid Censored Samples for the Proportional Hazards Family
In this paper, the problem of predicting times to failure of units censored in multiple stages of progressively hybrid censoring for the proportional hazards family is considered. We discuss different classical predictors. The best unbiased predictor ($BUP$), the maximum likelihood predictor ($MLP$) and conditional median predictor ($CMP$) are all derived. As an example, the obtained results ar...
متن کاملGenomic Prediction of Barley Hybrid Performance.
Hybrid breeding in barley ( L.) offers great opportunities to accelerate the rate of genetic improvement and to boost yield stability. A crucial requirement consists of the efficient selection of superior hybrid combinations. We used comprehensive phenotypic and genomic data from a commercial breeding program with the goal of examining the potential to predict the hybrid performances. The pheno...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 111 34 شماره
صفحات -
تاریخ انتشار 2014